Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38363547

RESUMO

Tumor necrosis factor (TNF) is a pleiotropic inflammatory cytokine that mediates antimicrobial defense and granuloma formation in response to infection by numerous pathogens. We previously reported that Yersinia pseudotuberculosis colonizes the intestinal mucosa and induces the recruitment of neutrophils and inflammatory monocytes into organized immune structures termed pyogranulomas (PG) that control Yersinia infection. Inflammatory monocytes are essential for the control and clearance of Yersinia within intestinal PG, but how monocytes mediate Yersinia restriction is poorly understood. Here, we demonstrate that TNF signaling in monocytes is required for bacterial containment following enteric Yersinia infection. We further show that monocyte-intrinsic TNFR1 signaling drives the production of monocyte-derived interleukin-1 (IL-1), which signals through IL-1 receptors on non-hematopoietic cells to enable PG-mediated control of intestinal Yersinia infection. Altogether, our work reveals a monocyte-intrinsic TNF-IL-1 collaborative inflammatory circuit that restricts intestinal Yersinia infection.


Assuntos
Yersiniose , Yersinia pseudotuberculosis , Humanos , Interleucina-1 , Yersinia , Fator de Necrose Tumoral alfa , Monócitos
2.
Annu Rev Microbiol ; 77: 451-477, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713455

RESUMO

The immune system of multicellular organisms protects them from harmful microbes. To establish an infection in the face of host immune responses, pathogens must evolve specific strategies to target immune defense mechanisms. One such defense is the formation of intracellular protein complexes, termed inflammasomes, that are triggered by the detection of microbial components and the disruption of homeostatic processes that occur during bacterial infection. Formation of active inflammasomes initiates programmed cell death pathways via activation of inflammatory caspases and cleavage of target proteins. Inflammasome-activated cell death pathways such as pyroptosis lead to proinflammatory responses that protect the host. Bacterial infection has the capacity to influence inflammasomes in two distinct ways: activation and perturbation. In this review, we discuss how bacterial activities influence inflammasomes, and we discuss the consequences of inflammasome activation or evasion for both the host and pathogen.


Assuntos
Apoptose , Inflamassomos , Homeostase , Piroptose , Transdução de Sinais
3.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205371

RESUMO

NLR family, apoptosis inhibitory proteins (NAIPs) detect bacterial flagellin and structurally related components of bacterial type III secretion systems (T3SS), and recruit NLR family, CARD domain containing protein 4 (NLRC4) and caspase-1 into an inflammasome complex that induces pyroptosis. NAIP/NLRC4 inflammasome assembly is initiated by the binding of a single NAIP to its cognate ligand, but a subset of bacterial flagellins or T3SS structural proteins are thought to evade NAIP/NLRC4 inflammasome sensing by not binding to their cognate NAIPs. Unlike other inflammasome components such as NLRP3, AIM2, or some NAIPs, NLRC4 is constitutively present in resting macrophages, and not thought to be regulated by inflammatory signals. Here, we demonstrate that Toll-like receptor (TLR) stimulation upregulates NLRC4 transcription and protein expression in murine macrophages, which licenses NAIP detection of evasive ligands. TLR-induced NLRC4 upregulation and NAIP detection of evasive ligands required p38 MAPK signaling. In contrast, TLR priming in human macrophages did not upregulate NLRC4 expression, and human macrophages remained unable to detect NAIP-evasive ligands even following priming. Critically, ectopic expression of either murine or human NLRC4 was sufficient to induce pyroptosis in response to immunoevasive NAIP ligands, indicating that increased levels of NLRC4 enable the NAIP/NLRC4 inflammasome to detect these normally evasive ligands. Altogether, our data reveal that TLR priming tunes the threshold for NAIP/NLRC4 inflammasome activation and enables inflammasome responses against immunoevasive or suboptimal NAIP ligands.

4.
bioRxiv ; 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37197029

RESUMO

Tumor necrosis factor (TNF) is a pleiotropic inflammatory cytokine that mediates antimicrobial defense and granuloma formation in response to infection by numerous pathogens. Yersinia pseudotuberculosis colonizes the intestinal mucosa and induces recruitment of neutrophils and inflammatory monocytes into organized immune structures termed pyogranulomas that control the bacterial infection. Inflammatory monocytes are essential for control and clearance of Yersinia within intestinal pyogranulomas, but how monocytes mediate Yersinia restriction is poorly understood. Here, we demonstrate that TNF signaling in monocytes is required for bacterial containment following enteric Yersinia infection. We further show that monocyte-intrinsic TNFR1 signaling drives production of monocyte-derived interleukin-1 (IL-1), which signals through IL-1 receptor on non-hematopoietic cells to enable pyogranuloma-mediated control of Yersinia infection. Altogether, our work reveals a monocyte-intrinsic TNF-IL-1 collaborative circuit as a crucial driver of intestinal granuloma function, and defines the cellular target of TNF signaling that restricts intestinal Yersinia infection.

5.
Nat Microbiol ; 8(4): 666-678, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36879169

RESUMO

Granulomas are organized immune cell aggregates formed in response to chronic infection or antigen persistence. The bacterial pathogen Yersinia pseudotuberculosis (Yp) blocks innate inflammatory signalling and immune defence, inducing neutrophil-rich pyogranulomas (PGs) within lymphoid tissues. Here we uncover that Yp also triggers PG formation within the murine intestinal mucosa. Mice lacking circulating monocytes fail to form defined PGs, have defects in neutrophil activation and succumb to Yp infection. Yersinia lacking virulence factors that target actin polymerization to block phagocytosis and reactive oxygen burst do not induce PGs, indicating that intestinal PGs form in response to Yp disruption of cytoskeletal dynamics. Notably, mutation of the virulence factor YopH restores PG formation and control of Yp in mice lacking circulating monocytes, demonstrating that monocytes override YopH-dependent blockade of innate immune defence. This work reveals an unappreciated site of Yersinia intestinal invasion and defines host and pathogen drivers of intestinal granuloma formation.


Assuntos
Yersiniose , Infecções por Yersinia pseudotuberculosis , Yersinia pseudotuberculosis , Animais , Camundongos , Monócitos , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/microbiologia , Yersinia pseudotuberculosis/genética , Fatores de Virulência/genética , Granuloma
6.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260403

RESUMO

Injection of effector proteins to block host innate immune signaling is a common strategy used by many pathogenic organisms to establish an infection. For example, pathogenic Yersinia species inject the acetyltransferase YopJ into target cells to inhibit NF-κB and MAPK signaling. To counteract this, detection of YopJ activity in myeloid cells promotes the assembly of a RIPK1-caspase-8 death-inducing platform that confers antibacterial defense. While recent studies revealed that caspase-8 cleaves the pore-forming protein gasdermin D to trigger pyroptosis in macrophages, whether RIPK1 activates additional substrates downstream of caspase-8 to promote host defense is unclear. Here, we report that the related gasdermin family member gasdermin E (GSDME) is activated upon detection of YopJ activity in a RIPK1 kinase-dependent manner. Specifically, GSDME promotes neutrophil pyroptosis and IL-1ß release, which is critical for anti-Yersinia defense. During in vivo infection, IL-1ß neutralization increases bacterial burden in wild-type but not Gsdme-deficient mice. Thus, our study establishes GSDME as an important mediator that counteracts pathogen blockade of innate immune signaling.


Assuntos
Imunidade Inata , Macrófagos/metabolismo , Proteínas de Neoplasias/metabolismo , Neutrófilos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Yersinia pseudotuberculosis/fisiologia , Células 3T3 , Animais , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Piroptose , Infecções por Yersinia pseudotuberculosis/imunologia , Infecções por Yersinia pseudotuberculosis/microbiologia
7.
Sci Adv ; 6(47)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208362

RESUMO

Gasdermin D (GSDMD) is a pore-forming protein that promotes pyroptosis and release of proinflammatory cytokines. Recent studies revealed that apoptotic caspase-8 directly cleaves GSDMD to trigger pyroptosis. However, the molecular requirements for caspase-8-dependent GSDMD cleavage and the physiological impact of this signaling axis are unresolved. Here, we report that caspase-8-dependent GSDMD cleavage confers susceptibility to tumor necrosis factor (TNF)-induced lethality independently of caspase-1 and that GSDMD activation provides host defense against Yersinia infection. We further demonstrate that GSDMD inactivation by apoptotic caspases at aspartate 88 (D88) suppresses TNF-induced lethality but promotes anti-Yersinia defense. Last, we show that caspase-8 dimerization and autoprocessing are required for GSDMD cleavage, and provide evidence that the caspase-8 autoprocessing and activity on various complexes correlate with its ability to directly cleave GSDMD. These findings reveal GSDMD as a potential therapeutic target to reduce inflammation associated with mutations in the death receptor signaling machinery.


Assuntos
Anti-Infecciosos , Peptídeos e Proteínas de Sinalização Intracelular , Caspase 8/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
8.
Front Plant Sci ; 10: 1182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636645

RESUMO

Rust fungi are devastating pathogens for several important crop plants. The biotrophic lifestyle of rust fungi requires that they influence their host plants to create a favorable environment for growth and reproduction. Rust fungi secrete a variety of effector proteins that manipulate host target proteins to alter plant metabolism and suppress defense responses. Because of the obligate biotrophic lifestyle of rust fungi, direct evidence for effector function is difficult to obtain, and so suites of experiments utilizing expression in heterologous systems are necessary. Here, we present results from a yeast cell death suppression assay and assays for suppression of PAMP-triggered immunity (PTI) and effector triggered immunity (ETI) based on delivery of effectors through the bacterial type III secretion system. In addition, subcellular localization was tested using transient expression of GFP fusion proteins in Nicotiana benthamiana through Agrobacterium infiltration. We tested 31 representative effector candidates from the devastating common bean rust pathogen Uromyces appendiculatus. These effector candidates were selected based on features of their gene families, most important lineage specificity. We show that several of our effector candidates suppress plant defense. Some of them also belong to families of effector candidates that are present in multiple rust species where their homologs probably also have effector functions. In our analysis of candidate effector mRNA expression, some of those effector candidates that gave positive results in the other assays were not up-regulated during plant infection, indicating that either these proteins have functions at multiple life stages or that strong up-regulation of RNA level in planta may not be as important a criterion for identifying effectors as previously thought. Overall, our pipeline for selecting effector candidates based on sequence features followed by screening assays using heterologous expression systems was successful in discriminating effector candidates. This work lays the foundation for functional characterization of U. appendiculatus effectors, the identification of effector targets, and identification of novel sources for resistance in common bean.

9.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31308080

RESUMO

Macrophages are critical mediators of innate immunity and must be overcome for bacterial pathogens to cause disease. The Gram-positive bacterium Staphylococcus aureus produces virulence factors that impede macrophages and other immune cells. We previously determined that production of the metabolic cofactor lipoic acid by the lipoic acid synthetase, LipA, blunts macrophage activation. A ΔlipA mutant was attenuated during infection and was more readily cleared from the host. We hypothesized that bacterial lipoic acid synthesis perturbs macrophage antimicrobial functions and therefore hinders the clearance of S. aureus Here, we found that enhanced innate immune cell activation after infection with a ΔlipA mutant was central to attenuation in vivo, whereas a growth defect imparted by the lipA mutation made a negligible contribution to overall clearance. Macrophages recruited to the site of infection with the ΔlipA mutant produced larger amounts of bactericidal reactive oxygen species (ROS) and reactive nitrogen species (RNS) than those recruited to the site of infection with the wild-type strain or the mutant strain complemented with lipA ROS derived from the NADPH phagocyte oxidase complex and RNS derived from the inducible nitric oxide synthetase, but not mitochondrial ROS, were critical for the restriction of bacterial growth under these conditions. Despite enhanced antimicrobial immunity upon primary infection with the ΔlipA mutant, we found that the host failed to mount an improved recall response to secondary infection. Our data suggest that lipoic acid synthesis in S. aureus promotes bacterial persistence during infection through limitation of ROS and RNS generation by macrophages. Broadly, this work furthers our understanding of the intersections between bacterial metabolism and immune responses to infection.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Macrófagos Peritoneais/metabolismo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Ácido Tióctico/biossíntese , Animais , Proteínas de Bactérias/metabolismo , Feminino , Interações Hospedeiro-Patógeno/imunologia , Ativação de Macrófagos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/microbiologia , Masculino , Camundongos , Viabilidade Microbiana , Mutação , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Espécies Reativas de Nitrogênio/antagonistas & inibidores , Espécies Reativas de Nitrogênio/imunologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Ácido Tióctico/farmacologia
10.
Infect Immun ; 87(5)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30833334

RESUMO

Gram-positive bacteria process and release small peptides, or pheromones, that act as signals for the induction of adaptive traits, including those involved in pathogenesis. One class of small signaling pheromones is the cyclic autoinducing peptides (AIPs), which regulate expression of genes that orchestrate virulence and persistence in a range of microbes, including staphylococci, listeriae, clostridia, and enterococci. In a genetic screen for Staphylococcus aureus secreted virulence factors, we identified an S. aureus mutant containing an insertion in the gene SAUSA300_1984 (mroQ), which encodes a putative membrane-embedded metalloprotease. A ΔmroQ mutant exhibited impaired induction of Toll-like receptor 2-dependent inflammatory responses from macrophages but elicited greater production of the inflammatory cytokine interleukin-1ß and was attenuated in a murine skin and soft tissue infection model. The ΔmroQ mutant phenocopies an S. aureus mutant containing a deletion of the accessory gene regulatory system (Agr), wherein both strains have significantly reduced production of secreted toxins and virulence factors but increased surface protein A abundance. The Agr system controls virulence factor gene expression in S. aureus by sensing the accumulation of AIP via the histidine kinase AgrC and the response regulator AgrA. We provide evidence to suggest that MroQ acts within the Agr pathway to facilitate the optimal processing or export of AIP for signal amplification through AgrC/A and induction of virulence factor gene expression. Mutation of MroQ active-site residues significantly reduces AIP signaling and attenuates virulence. Altogether, this work identifies a new component of the Agr quorum-sensing circuit that is critical for the production of S. aureus virulence factors.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Membrana/imunologia , Peptídeo Hidrolases/imunologia , Percepção de Quorum/imunologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/imunologia , Virulência/imunologia , Regulação Bacteriana da Expressão Gênica/imunologia
11.
Mol Microbiol ; 109(2): 150-168, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29660187

RESUMO

Lipoic acid is a cofactor required for intermediary metabolism that is either synthesized de novo or acquired from environmental sources. The bacterial pathogen Staphylococcus aureus encodes enzymes required for de novo biosynthesis, but also encodes two ligases, LplA1 and LplA2, that are sufficient for lipoic acid salvage during infection. S. aureus also encodes two H proteins, GcvH of the glycine cleavage system and the homologous GcvH-L encoded in an operon with LplA2. GcvH is a recognized conduit for lipoyl transfer to α-ketoacid dehydrogenase E2 subunits, while the function of GcvH-L remains unclear. The potential to produce two ligases and two H proteins is an unusual characteristic of S. aureus that is unlike most other Gram positive Firmicutes and might allude to an expanded pathway of lipoic acid acquisition in this microorganism. Here, we demonstrate that LplA1 and LplA2 facilitate lipoic acid salvage by differentially targeting lipoyl domain-containing proteins; LplA1 targets H proteins and LplA2 targets α-ketoacid dehydrogenase E2 subunits. Furthermore, GcvH and GcvH-L both facilitate lipoyl relay to E2 subunits. Altogether, these studies identify an expanded mode of lipoic acid salvage used by S. aureus and more broadly underscore the importance of bacterial adaptations when faced with nutritional limitation.

12.
Mol Plant Microbe Interact ; 31(1): 163-174, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29144203

RESUMO

Rust fungi, such as the soybean rust pathogen Phakopsora pachyrhizi, are major threats to crop production. They form specialized haustoria that are hyphal structures intimately associated with host-plant cell membranes. These haustoria have roles in acquiring nutrients and secreting effector proteins that manipulate host immune systems. Functional characterization of effector proteins of rust fungi is important for understanding mechanisms that underlie their virulence and pathogenicity. Hundreds of candidate effector proteins have been predicted for rust pathogens, but it is not clear how to prioritize these effector candidates for further characterization. There is a need for high-throughput approaches for screening effector candidates to obtain experimental evidence for effector-like functions, such as the manipulation of host immune systems. We have focused on identifying effector candidates with immune-related functions in the soybean rust fungus P. pachyrhizi. To facilitate the screening of many P. pachyrhizi effector candidates (named PpECs), we used heterologous expression systems, including the bacterial type III secretion system, Agrobacterium infiltration, a plant virus, and a yeast strain, to establish an experimental pipeline for identifying PpECs with immune-related functions and establishing their subcellular localizations. Several PpECs were identified that could suppress or activate immune responses in nonhost Nicotiana benthamiana, N. tabacum, Arabidopsis, tomato, or pepper plants.


Assuntos
Proteínas Fúngicas/metabolismo , /microbiologia , Phakopsora pachyrhizi/metabolismo , Sistemas de Secreção Bacterianos , Capsicum/microbiologia , Morte Celular , Clonagem Molecular , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo , Proteína X Associada a bcl-2/metabolismo
13.
Cell Host Microbe ; 22(5): 678-687.e9, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29056428

RESUMO

The virulence factors of pathogenic microbes often have single functions that permit immune suppression. However, a proportion possess multiple activities and are considered moonlighting proteins. By examining secreted virulence factors of Staphylococcus aureus, we determine that the bacterial lipoic acid synthetase LipA suppresses macrophage activation. LipA is known to modify the E2 subunit of the metabolic enzyme complex pyruvate dehydrogenase (E2-PDH) with a fatty acid derivative, lipoic acid, yielding the metabolic protein lipoyl-E2-PDH. We demonstrate that lipoyl-E2-PDH is also released by S. aureus and moonlights as a macrophage immunosuppressant by reducing Toll-like receptor 1/2 (TLR1/2) activation by bacterial lipopeptides. A LipA-deficient strain induces heightened pro-inflammatory cytokine production, which is diminished in the absence of TLR2. During murine systemic infection, LipA suppresses pro-inflammatory macrophage activation, rendering these cells inefficient at controlling infection. These observations suggest that bacterial metabolism and immune evasion are linked by virtue of this moonlighting protein.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo , Fatores de Virulência/antagonistas & inibidores , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Medula Óssea , Técnicas de Cultura de Células , Citocinas/metabolismo , DNA Bacteriano/isolamento & purificação , Di-Hidrolipoamida Desidrogenase/imunologia , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita/imunologia , Evasão da Resposta Imune , Imunidade Inata , Macrófagos/imunologia , Camundongos , Complexo Piruvato Desidrogenase/imunologia , Proteínas Recombinantes , Deleção de Sequência , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Ácido Tióctico/metabolismo , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo , Fatores de Virulência/imunologia
14.
PLoS Pathog ; 12(10): e1005933, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27701474

RESUMO

To thrive in diverse environments, bacteria must shift their metabolic output in response to nutrient bioavailability. In many bacterial species, such changes in metabolic flux depend upon lipoic acid, a cofactor required for the activity of enzyme complexes involved in glycolysis, the citric acid cycle, glycine catabolism, and branched chain fatty acid biosynthesis. The requirement of lipoic acid for metabolic enzyme activity necessitates that bacteria synthesize the cofactor and/or scavenge it from environmental sources. Although use of lipoic acid is a conserved phenomenon, the mechanisms behind its biosynthesis and salvage can differ considerably between bacterial species. Furthermore, low levels of circulating free lipoic acid in mammals underscore the importance of lipoic acid acquisition for pathogenic microbes during infection. In this study, we used a genetic approach to characterize the mechanisms of lipoic acid biosynthesis and salvage in the bacterial pathogen Staphylococcus aureus and evaluated the requirements for both pathways during murine sepsis. We determined that S. aureus lipoic acid biosynthesis and salvage genes exist in an arrangement that directly links redox stress response and acetate biosynthesis genes. In addition, we found that lipoic acid salvage is dictated by two ligases that facilitate growth and lipoylation in distinct environmental conditions in vitro, but that are fully compensatory for survival in vivo. Upon infection of mice, we found that de novo biosynthesis or salvage promotes S. aureus survival in a manner that depends upon the infectious site. In addition, when both lipoic acid biosynthesis and salvage are blocked S. aureus is rendered avirulent, implying an inability to induce lipoic acid-independent metabolic programs to promote survival. Together, our results define the major pathways of lipoic acid biosynthesis and salvage in S. aureus and support the notion that bacterial nutrient acquisition schemes are instrumental in dictating pathogen proclivity for an infectious niche.


Assuntos
Sepse/metabolismo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Ácido Tióctico/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...